每逢周四看Nature,今天介绍一篇文章是紫杉醇相关的。
文章标题为《Discovery of FoTO1 and Taxol genes enables biosynthesis of baccatin III》,2025年6月11日在线发表于Nature。
紫杉醇及其衍生物,是一类高效低毒的广谱抗癌药物,年销售额数十亿美元。但是其生物合成途径依然不清楚,一直以来主要是靠纯化来获取。这里的潜台词就是,一旦能够掌握其生物合成途径,那么对于癌症患者来说是福音。
网上随便一搜,就发现2024年的时候,北大牵头的多个科研团队联合,实现了紫杉醇关键生产前体(baccatin III)合成路线的人工重构,相关工作以《Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III》发表在Science上。这两篇文章后面有空可以比较阅读一下,今天先看看Nature这篇最新的。
Identifying the full paclitaxel biosynthetic pathway would enable heterologous production of the drug, but this has yet to be achieved despite half a century of research
摘要中作者一句话就指出了科学问题是什么,即 what is the full paclitaxel biosynthetic pathway? 并同时指出了这个科学问题的突破能够带来的是:enable heterologous production of the drug. 还指出了这个问题的难度:has yet to be achieved half a century. 当一个科学问题很清楚
,很有价值
但难度又很大
,这正是Nature、Science这些顶级期刊关心的问题。
Within Taxus’ large, enzyme-rich genome, we suspected that the paclitaxel pathway would be difficult to resolve using conventional RNA-sequencing and co-expression analyses. Here, to improve the resolution of transcriptional analysis for pathway identification, we developed a strategy we term multiplexed perturbation × single nuclei (mpXsn) to transcriptionally profile cell states spanning tissues, cell types, developmental stages and elicitation conditions.
一个问题几十年没有突破,主要是红豆杉基因组庞大,传统的一些RNA测序,共表达方法根本搞不定。所以这里就要利用新的方法另辟蹊径了,这个工作中提出的新方法就是 mpXsn。虽然不动,但结合文字描述看图👇大概是单细胞核RNA测序(转录组?)
Our data show that paclitaxel biosynthetic genes segregate into distinct expression modules that suggest consecutive subpathways. These modules resolved seven new genes, allowing a de novo 17-gene biosynthesis and isolation of baccatin III, the industrial precursor to Taxol, in Nicotiana benthamiana leaves, at levels comparable with the natural abundance in Taxus needles.
利用这项技术,该项研究解析了7个新基因,这7个基因和已知的10个基因完善了一个从头开始(de novo)的baccatin III 合成途径。
Notably, we found that a nuclear transport factor 2 (NTF2)-like protein, FoTO1, is crucial for promoting the formation of the desired product during the first oxidation, resolving a long-standing bottleneck in paclitaxel pathway reconstitution. Together with a new β-phenylalanine-CoA ligase, the eight genes discovered here enable the de novo biosynthesis of 3’-N-debenzoyl2’-deoxypaclitaxel.
接下来摘要中更进一步地解释了7个基因中的关键FoTO1以及它的作用。再加上另外一个连接酶的基因,还能合成另外一个紫杉醇衍生物。
转录组学最近五到十年算非常火的技术了,而这就是典型的技术发展带来科学突破的例子。